Answer:
Acceleration, in m/s, of such a rock fragment =
Explanation:
According to Newton's Third Equation of motion
Where:
is the final velocity
is the initial velocity
a is the acceleration
s is the distance
In our case:
So Equation will become:
Acceleration, in m/s, of such a rock fragment =
Answer:
Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as
We have the length of the pendulum is L=0.81 meters, then we have
(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as
where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that
And
Solving for Y
The potential energy is
The mechanical energy is, then
(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know
Equating to the mechanical energy of the system (M)
Solving for v
Gravitational energy is a form of potential energy because it is dependent on the mass of an object and needs to be calculated for the specific object.
Answer:
<em>The first law states that</em> every planet describes an elliptical path about the sun as a single focus.
<em>The</em><em> </em><em>second</em><em> </em><em>law</em><em> </em><em>states</em><em> </em><em>that</em><em> </em>The line joining the planet to the sun sweeps out equal areas in equal time intervals.
<em>The</em><em> </em><em>third</em><em> </em><em>law</em><em> </em><em>states</em><em> </em><em>that</em><em> </em>The squares of the period of revolution is proportional to the cubes of the mean distance between the planet and the sun
I took this test and the correct answer is c
I hope this helps