Answer:
θ = 22.2
Explanation:
This is a diffraction exercise
a sin θ = m λ
The extension of the third zero is requested (m = 3)
They indicate the wavelength λ = 630 nm = 630 10⁻⁹ m and the width of the slit a = 5 10⁻⁶ m
sin θ = m λ / a
sin θ = 3 630 10⁻⁹ / 5 10⁻⁶
sin θ = 3.78 10⁻¹ = 0.378
θ = sin⁻¹ 0.378
to better see the result let's find the angle in radians
θ = 0.3876 rad
let's reduce to degrees
θ = 0.3876 rad (180º /π rad)
θ = 22.2º
Answer:
The force of friction that acts on him is

Explanation:
The firefighter with an acceleration of 3m/s^2 take the gravity acceleration as 10m/s^2 isn't necessary to know the coefficient of friction just to know the force of friction:




Sole to Fk



Planck's constant. A physical constant adopted in 2011 by the CGPM.
media.discordapp.net/attachments/782414373888458783/826224189828366377/video0.mp4
Answer:
The resultant velocity is 86.1 mi/h.
Explanation:
The law of cosines is given by:

Where:
c: is the resultant velocity =?
a: is the velocity of the plane = 75.0 mi/h
b: is the velocity of the wind = 15.0 mi/h
θ: is the angle between "a" and "b"
The angle between "a" and "b" can be found as follows:
Now, by using the law of cosines we have:

Therefore, the resultant velocity is 86.1 mi/h.
The law of sines is:

Where:
γ: is the angle between "b" and "c"
α: is the angle between "a" and "c"
So, if we want to find "c" by using the law of sines, we need to know another angle besides θ (γ or α), and the statement does not give us.
I hope it helps you!