Answer:
The distance of separation is decreased
Explanation:
From Cuolomb's law, we know that the strength of charge is inversely proportional to the distance of separation between the charges. To mean that increasing the distance let's say from 2m to 3 m would mean initial strength getting form 1/4 to 1/9 which is a decrease. The vice versa is true hence the force of repulsion can increase only when we decrease the distance of separation.
The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Her weight = (mass) · (gravity) = (50kg) · (9.8 m/s²)
Work = (weight) · (height) = (50kg) · (9.8 m/s²) · (6 m)
Power = (work) / (time) = (50kg) · (9.8 m/s²) · (6 m) / (15 s)
Power = (50 · 9.8 · 6 / 15) · (kg · m² / s³)
Power = 196 (kg · m / s²) · (m) / s
Power = 196 Newton-meter/second
<em>Power = 196 watts</em>
Answer: The velocity of the ball is 30.0 m/s
This can be calculated by using the value of acceleration as 10.0 m/s2 in free fall and the given time of 3.0 seconds. To get the
velocity, one will have to multiply the acceleration with the given time and the
quotient would result to 30.0 m/s. Mostly all object regardless of their mass,
fall to earth with the same acceleration in the absence of air resistance and as
the child drops the ball from a window, it gains speed as it falls.
It holds more weight in the regular water.