Action and reaction are equal in magnitude and opposite direction by they don't balance each other because they don't occur on the same body. Action is involved on one body and reaction is involved on another body.
Hope you understood...
1. it is difficult to search for it . Because infrared rays will never penetrate through earth atmosphere.
2. we are unaware of how it looks like and we only know it is red and will glow . A damaged star also looks like this.
3. Dust also makes is hard to detect Dyson spheres . So we will get confused between Dyson sphere and a star surrounded by dust.
Answer:
The value is 
Explanation:
From the question we are told that
The period of the asteroid is 
Generally the average distance of the asteroid from the sun is mathematically represented as
![R = \sqrt[3]{ \frac{G M * T^2 }{4 \pi} }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7BG%20M%20%2A%20T%5E2%20%7D%7B4%20%5Cpi%7D%20%7D)
Here M is the mass of the sun with a value

G is the gravitational constant with value 
![R = \sqrt[3]{ \frac{6.67 *10^{-11} * 1.99*10^{30} * [5.55 *10^{9}]^2 }{4 * 3.142 } }](https://tex.z-dn.net/?f=R%20%3D%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6.67%20%2A10%5E%7B-11%7D%20%20%2A%201.99%2A10%5E%7B30%7D%20%2A%20%5B5.55%20%2A10%5E%7B9%7D%5D%5E2%20%7D%7B4%20%2A%203.142%20%7D%20%7D)
=> 
Generally

So

=> 
=> 
The electric force between two charged particles can be increased by decreasing the distance between the two particles.
<h3>How to increase electric force between two charged particles.</h3>
The technique of decreasing the separation distance between objects increases the force of attraction or repulsion between the objects. while
increasing the separation distance between objects decreases the force of attraction or repulsion between the objects.
Read more on Electric Force:
brainly.com/question/17692887
#SPJ1
Answer: the particles are more orderly in region 1
Explanation: region 1 is when the substance is a solid and as it is heated the particles move further apart and have more kinetic energy.