The answer to your problem is 4.32.
The statement that best describes the information about the medians would be: the class median and exam median are almost the same.
<h3>Median of a Data Set on a Box Plot</h3>
- The median of any data distribution that is plotted on a box plot is indicated by the vertical line that divides the rectangular box in the box plot.
Thus:
- The median for class is 84
- The median for exam is 85.
Therefore, the statement that best describes the information about the medians would be: the class median and exam median are almost the same.
Learn more about Box Plot on:
brainly.com/question/10209877
Supposing a normal distribution, we find that:
The diameter of the smallest tree that is an outlier is of 16.36 inches.
--------------------------------
We suppose that tree diameters are normally distributed with <u>mean 8.8 inches and standard deviation 2.8 inches.</u>
<u />
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- The Z-score measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.<u>
</u>
<u />
In this problem:
- Mean of 8.8 inches, thus
. - Standard deviation of 2.8 inches, thus
.
<u />
The interquartile range(IQR) is the difference between the 75th and the 25th percentile.
<u />
25th percentile:
- X when Z has a p-value of 0.25, so X when Z = -0.675.




75th percentile:
- X when Z has a p-value of 0.75, so X when Z = 0.675.




The IQR is:

What is the diameter, in inches, of the smallest tree that is an outlier?
- The diameter is <u>1.5IQR above the 75th percentile</u>, thus:

The diameter of the smallest tree that is an outlier is of 16.36 inches.
<u />
A similar problem is given at brainly.com/question/15683591
Answer:
No
Step-by-step explanation:
Answer:
Step-by-step explanation:
72%