Energy levels are the electron shells where electrons are found at a fixed distance from the nucleus of the atom. The atom could emit 6 different wavelengths.
<h3>What is wavelength?</h3>
A wavelength is a distance between the adjacent crests in wave signals propagated in a system. Wavelength
is in inverse relation to the frequency of the wave.
When an electron jumps from energy level 1 to 2, 1 to 3, and 1 to 4 one wavelength each is present. Hence, making the total wavelength to be 3, in transition from the first energy level.
Similarly, from energy levels, 2 to 3 and 2 to 4, a total of 2 wavelengths, and from energy levels 3 to 4 one wavelength is produced.
So the total different wavelengths of the radiation that can be emitted will be 3 + 2 + 1 = 6.
Therefore, 6 different wavelengths of radiation will be emitted by the atom.
Learn more about wavelengths here:
brainly.com/question/21419520
#SPJ1
Answer:
212°F , 100°C , 373.15°K
They are all the same, in different units.
Answer:
Less
Explanation:
Since [Cu(NH3)4]2+ and [Cu(H2O)6]2+ are Octahedral Complexes the transitions between d-levels explain the majority of the absorbances seen in those chemical compounds. The difference in energy between d-levels is known as ΔOh (ligand-field splitting parameter) and it depends on several factors:
- The nature of the ligand: A spectrochemical series is a list of ligands ordered on ligand strength. With a higher strength the ΔOh will be higher and thus it requires a higher energy light to make the transition.
- The oxidation state of the metal: Higher oxidation states will strength the ΔOh because of the higher electrostatic attraction between the metal and the ligand
A partial spectrochemical series listing of ligands from small Δ to large Δ:
I− < Br− < S2− < Cl− < N3− < F−< NCO− < OH− < C2O42− < H2O < CH3CN < NH3 < NO2− < PPh3 < CN− < CO
Then NH3 makes the ΔOh higher and it requires a higher energy light to make the transition, which means a shorter wavelength.
Answer:
– 1
Explanation:
From the question given above, we obtained the following:
Electron = 8
Net charge of nitrogen =.?
Nitrogen has atomic number of 7. This also means that nitrogen has 7 proton because atomic number of an element is the equal to number of protons in the atom of the element.
Thus, we can obtain the net charge of nitrogen with 8 electrons by calculating the difference between the protons and electrons of the nitrogen atom. This can be obtained as follow:
Proton = 7
Electron = 8
Net charge = Proton – Electron
Net charge = 7 – 8
Net charge = – 1
Therefore, the net charge of the nitrogen atom with 8 electrons is – 1
See image below for the lewis structure of acrolein