1 mole=6.02 x 10^23 atoms so how many moles are there in 3.0 x 10^23 we will cross multiply, 1 x 3.0 x 10^23 / 6.02 x 10 ^23. Which will give us 0.498 moles.
Hope this helped
It is true yes :) happy to help
Answer:
Identify each equation as a composition reaction, a decomposition reaction, or neither.
Fe2O3 + 3 SO3 → Fe2(SO4)3
NaCl + AgNO3 → AgCl + NaNO3
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2
Solution
In this equation, two substances combine to make a single substance. This is a composition reaction.
Two different substances react to make two new substances. This does not fit the definition of either a composition reaction or a decomposition reaction, so it is neither. In fact, you may recognize this as a double-replacement reaction.
A single substance reacts to make multiple substances. This is a decomposition reaction.
Test Yourself
Identify the equation as a composition reaction, a decomposition reaction, or neither.
C3H8 → C3H4 + 2 H2
Explanation:
I hope I help :)))
Answer:
True
Explanation:
Sometimes you will need to convert from grams to moles, or moles to grams
Answer:
1.02mole
Explanation:
The reaction equation is given as:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
Given:
Mass of H₂SO₄ = 50g
Unknown:
Number of moles of NaOH = ?
Solution:
To solve this problem, we first find the number of moles of the acid given;
Number of moles =
Molar mass of H₂SO₄ = 2(1) + 32 + 4(16) = 98g/mol
Now;
Number of moles = = 0.51mole
From the balanced reaction equation:
1 mole of H₂SO₄ will be neutralized by 2 mole of NaOH
0.51 mole of H₂SO₄ will be neutralized by 2 x 0.51 = 1.02mole of NaOH