Answer:
The question isn't worded properly, but if 1 or 2 are DECREASED, the frequency of collisions of specified molecules will decrease.
Explanation:
Catalysts only facilitate reaction once molecules collide. Increased temperature makes molecules move more, and thus collide more. For concentration, if there are more molecules in the same amount of room/liquid, there will be more collisions because there are more of the molecules to collide.
Answer is: Both a fluorine atom and a bromine atom gain one electron, and both atoms become stable.
Fluorine and bromine are in group 17 in Periodic table of elements. Group 17 (halogens) elements are in group 17: fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). They are very reactive and easily form many compounds.
Halogens need to gain one electron to have electron cofiguration like next to it noble gas.
Fluorine has atomic number 9, it means it has 9 protons and 9 electrons.
Fluorine tends to have eight electrons in outer shell like neon (noble gas) and gains one electron in chemical reaction.
Electron configuration of fluorine: ₉F 1s² 2s² 2p⁵.
Electron configuration of neon: ₁₀Ne 1s² 2s² 2p⁶.
Answer : The volume of stock solution needed are, 12.5 mL
Explanation :
Formula used :

where,
are the initial molarity and volume of copper (II) chloride.
are the final molarity and volume of stock solution of copper (II) chloride.
We are given:

Putting values in above equation, we get:

Hence, the volume of stock solution needed are, 12.5 mL
1) Find the number of moles that the final solution must contain
M = n / liters of solution => n = M*liters of solution
n = 1.5 mol/liter * 25.0 liter = 37.5 moles
2) Find how many liters of the stock solution contain 37.5 moles of HCL
M = n / liters of sulution => liters of solution = n / M = 37.5 mol / 18.5 mol/liter
liter of solution = 2.03 liter
Answer: 2.03 liter
OC. (Third one) is balanced