6.022x10^23 is Avogadro’s number. Use this whenever you work with Stoichiometry involving Atoms, formula units, or molecules. 1 mol of anything is always Avogadro’s number.
Multiply everything on the top= 6.93 x 10^23
Divide by everything on the bottom = 6.93 x 10^23
Answer: 6.93 x 10^23 atoms Cu.
The unit of mass is 'Kilogram' which is written as 'kg' and volume, v = 10 L.
<h3>Equation :</h3>
To calculate the volume
Use formula,
density = mass / volume
density = 100 kg/L
mass = 1000 kg
volume = mass / density
v = 1000/100
v = 10 L
<h3>What is density mass?</h3>
A substance, material, or object's mass density is a measure of how much mass (or how many particles) it has in relation to the volume it occupies.
To know more about volume :
brainly.com/question/1578538
#SPJ9
I understand the question you are looking for :
If you have a density of 100 kg/L, and a mass of 1000 units, tell me the following: First what are the mass units? Secondly, what is the volume?
Answer:
4) transferred from the valence shell of one atom to the valence shell of another atom
Explanation:
Electrons are located outside of the nucleus which contains the protons and the neutrons.
For bonds to form, valence electrons located in the outermost shell electrons are involved. These are the valence electrons. These outer shell electrons can be shared or transferred between two combining atoms to form stable atoms.
In ionic bonds, the electrons are transferred from one specie to another. The atom that loses the electrons becomes positively charged and the receiving atom becomes negatively charged. This is the crux of ionic bonds.
Answer:
1.78 × 10²⁶ Atoms
Explanation:
Relation between number of molecules and moles is,
No. of Molecules = Moles × 6.022 × 10²³ Molecules/mol
No. of Molecules = 99 mol × 6.022 × 10²³ Molecules/mol
No. of Molecules = 5.96 × 10²⁵ Molecules
Also, In CO₂ Molecule there are 3 atoms.
So,
No. of atoms = 5.96 × 10²⁵ Molecules × 3
No. of atoms = 1.78 × 10²⁶ Atoms
Answer:
1.8 × 10² s
Explanation:
Let's consider the reduction that occurs upon the electroplating of copper.
Cu²⁺(aq) + 2 e⁻ ⇒ Cu(s)
We will establish the following relationships:
- 1 g = 1,000 mg
- The molar mass of Cu is 63.55 g/mol
- When 1 mole of Cu is deposited, 2 moles of electrons circulate.
- The charge of 1 mole of electrons is 96,486 C (Faraday's constant).
- 1 A = 1 C/s
The time that it would take for 336 mg of copper to be plated at a current of 5.6 A is: