Answer:
Heat flux = 13.92 W/m2
Rate of heat transfer throug the 3m x 3m sheet = 125.28 W
The thermal resistance of the 3x3m sheet is 0.0958 K/W
Explanation:
The rate of heat transfer through a 3m x 3m sheet of insulation can be calculated as:

The heat flux can be defined as the amount of heat flow by unit of area.
Using the previous calculation, we can estimate the heat flux:

It can also be calculated as:

The thermal resistance can be expressed as

For the 3m x 3m sheet, the thermal resistance is

Answer:
151.4863 years
Explanation:
Half life, t1/2 = 100 years
Initial concentration,[A]o = 100%
Final concentration, [A] = 35% (after 65% have been decayed)
Time = ?
Half life for a first Order reaction is given as;
t1/2 = ln (2) / k
k = ln(2) / 100
k = 0.00693y-1
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(35)] /0.00693
t = 1.0498 / 0.00693
t = 151.4863 years
<u>Solution and Explanation:</u>
[La3+] = 0.1 M
<u>At the equilibrium:
</u>
La(IO3)3 <----> La3+ + 3 IO3-
0.1 +s 3s
![\mathrm{Ksp}=[\mathrm{La} 3+][\mathrm{IO} 3-]^{\wedge} 3](https://tex.z-dn.net/?f=%5Cmathrm%7BKsp%7D%3D%5B%5Cmathrm%7BLa%7D%203%2B%5D%5B%5Cmathrm%7BIO%7D%203-%5D%5E%7B%5Cwedge%7D%203)

Since Ksp is small, s can be ignored as compared to the 0.1
The above shown expression thus becomes:



<u>Answer: 1.4*10^-4 M
</u>
The Ecliptic is an imaginary line on the sky that marks the annual path of the sun. It is the projection of Earths orbit onto the celestial sphere. The ecliptic is even the starting point for the celestial coordinate system used by astronomers to pinpoint the location of every star, nebula, and galaxy.