Answer: Rubbing alcohol molecules have a polar and nonpolar part, which means they are able to form hydrogen bonds with water and therefore able to mix with it.
Explanation:
Answer:
0.135 mole of H2.
Explanation:
We'll begin by calculating the number of mole in 3.24 g of Mg. This can be obtained as follow:
Mass of Mg = 3.24 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 3.24/24
Mole of Mg = 0.135 mole
Next, we shall write the balanced equation for the reaction. This is illustrated below:
Mg + 2HCl —> MgCl2 + H2
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Finally, we shall determine the number of mole of H2 produced by reacting 3.24 g (i.e 0.135 mole) of Mg. This can be obtained as follow:
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Therefore, 0.135 mole of Mg will also react to produce 0.135 mole of H2.
Thus, 0.135 mole of H2 can be obtained from the reaction.
True.
For example: Sodium oxide and Nitric acid; both compounds contain oxygen.
Answer:
A decrease in temperature would decrease kinetic energy, therefore decreasing collisions possible.
Explanation:
A gas at a fixed volume is going to have collisions automatically. If you decrease the temperature (same thing as decreasing kinetic energy) you are cooling down the molecules in the container which gives them less energy and "relaxes" them. This decrease in energy causes them to move around much slower and causing less collisions, at a much slower rate. In a perfect world, these collisions do not slow down the molecule but we know that they do, just a very very small unmeasurable amount.
All of the questions here are pertaining to the colligative properties of a solution and the preparation of solutions. Maybe, it would be best if you understand the equations to be used in order to answer these questions.<span>
Freezing point depression or Boiling point elevation:
</span><span>ΔT = -K (m) (i)
</span>ΔT is the change in the freezing point or the boiling point not the freezing point/boiling point. Therefore, it should be added to the original value of the property of the solvent.
<span>
K is a constant called the molal freezing point depression constant and for the boiling point is the boiling point elevation constant. It is a property of the solvent.
</span><span>
m is the concentration of the solute in the solvent in terms of molality or kg solute/kg solvent.
</span><span>
i is the vant hoff factor which will represent the number of ions which the solute dissociates when in solution.</span>