Answer:
Option A
The cost of keeping the semiconductor below the critical temperature is unreasonable
Explanation:
First of all, we need to understand what superconductors are. Superconductors are special materials that conduct electrical current with almost zero resistance. This means that there is little or no need for a voltage source to be connected to them. As a matter of fact, once a superconductor is connected to a power supply, one can remove the power supply and the current will still flow.
However, most superconducts can only conduct at very low temperatures up to -200 degrees Celcius. This is because, at that temperature, their atoms and molecules are relatively settled, hence they pose little or no resistance to the flow of current.
This as you can guess is extremely difficult to do, as you will need a lot of effort to cool it to that temperature and maintain it.
This makes option a the answer:
The cost of keeping the semiconductor below the critical temperature is unreasonable.
Answer:
An object decreases in size due to the collision of materials. An object increases in size due to the addition of materials. Gas particles are formed from solar nebula materials.
Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
Laser means Light Amplication by Stimulated Emission of Radiation.
Uses of laser
DNA sequencing instrument
Cutting and welding materials
Semiconducting chip manufacturing
Military devices
IF YOU LIKE MY ANSWER MARK AS BRAINLIEST