Answer:
the tension in the string an instant before it broke = 34 N
Explanation:
Given that :
mass of the ball m = 300 g = 0.300 kg
length of the string r = 70 cm = 0.7 m
At highest point, law of conservation of energy can be expressed as :


The tension in the string is:

Thus, the tension in the string an instant before it broke = 34 N
Answer:
my bad ion even know what it is i just need sum points
Explanation:
The answer is D.An ice cube melts when a person holds it in his hand
The heat from your body is causing the ice cube to melt
Answer:
1.05 J.
Explanation:
Kinetic Energy: This is the energy possessed by a body due to its motion. The S.I unit of kinetic energy is Joules (J). The formula of kinetic energy is given as
Ek = 1/2mv²................. Equation 1
Where Ek = kinetic energy, m = mass of the uniform rod, v = liner velocity of the rod.
But,
v = αr .......................... Equation 2
Where α = angular velocity of the rod, r = radius of the circle.
Given: α = 3.6 red/s, r = 120/2 = 60 cm = 0.6 m.
Substitute into equation 2
v = 3.6(0.6)
v = 2.16 m/s.
Also given: m = 450 g = 0.45 kg.
Substitute into equation 1
Ek = 1/2(0.45)(2.16²)
Ek = 1.05 J.
The statement "<span>The maximum intensity increases, and the peak wavelength decreases."</span> is true regarding how black body radiation changes as the temperature of the radiating object increases. Temperature is directly proportional to intensity but inversely proportional to the wavelength.