Answer:
(a) You can tell that have the same strength because they have attracted the same amount of paper clips.
(b) Iron is used in electromagnets because steel retained magnetic properties after the power was turned off, but in the iron, the paper clips dropped off right away.
Answer:
The ball will be attracted to the negatively charged plate. It'll touch and pick up some electrons from the plate so that the ball becomes negatively charged. Immediately the ball is repelled by the negative plate and is attracted to the positive plate. The ball gives up electrons to the positive plate so that it is positively charged and suddenly attracts to the negative plate again, flies over to it and picks up enough electrons to be repulsed by negative plate and again to the positive plate and that continues.
Answer:
The correct option is;
A. The potential energy between both like charges and like poles increases as they move closer together
Explanation:
Here we have that when we move the like poles of two bar magnets close to each other, there is an increased resistance in the continuing motion, therefore for each extra gap closer achieved, there is an increase in potential energy
Similarly, when two like charges are brought closer together, the potential energy, or the energy available to push the two like charges apart increases charge as the as the charges are brought closer together
Therefore, the correct option is the potential energy between both like charges and like poles increases as they move closer together.
Answer:
The train's displacement is zero.
Explanation:
Given data,
The time taken by the train from NY to Washington and back is, t = 6 h 5 min
The distance between the two stations is, d = 363 km
Therefore, the total distance the train traveled is, d' = 726 km
The displacement is defined as the change in position coordinates with respect to its original position.
If the train travels from one point and returns back to the same point after some time, there is no change in the position coordinates with respect to its original position.
Hence, the train's displacement is zero.
X-rays have high energy and can penetrate matter that light cannot.