Answer:
b) lattice energy
Explanation:
A solution is said to have colligative property when the property depends on the solute present in the solution.
Colligative property depend upon on the solute particle or the ion concentration not on the identity of solute.
osmotic pressure, vapor pressure lowering , boiling point elevation and freezing point lowering all depend upon solute concentration so they will not have colligative property so, the answer remains option 'b' which is lattice energy.
A. The formula for mean free time is:
t = V/(4π√2 r²vN)
where
N = 1×10¹⁶ molecules (per m³)
V = 1 m³
r = 111×10⁻⁷m (atomic radius of silicon)
Let's solve for v first:
v = √(3RT/M) = √(3(8.314 m³·Pa/mol·K)(25 + 273 K)/28.1 g/mol Si)
v = 16.26 m/s
t = (1 m³)/(4π√2 (111×10⁻⁷m)²(16.26 m/s)(1×10¹⁶ molecules))
<em>t = 2.81×10⁻9 s</em>
<em>Pure silicon has a high resistivity relative to copper because copper is a conductor, while silicon is a semi-conductor. </em>
Answer:
a. the amount of work done on a system is dependent of pathway
Explanation:
The first law of thermodynamics states that the change in internal energy of a system equals the net heat transfer into the system minus the net work done by the system.
ΔU = Q - W
Where;
Q, the net heat transfer into the system depends on the pathway
W, the net work done by the system also depends on the pathway
But, ΔU, the change in internal energy is independent of pathway
Therefore, the correct option is "A"
a. the amount of work done on a system is dependent of pathway
Answer:
Vaporation
Explanation:
In the vaporization or boiling, the passage of particles from the liquid state to the gaseous state occurs completely