Answer:
A force pump can be used to raise water by a height of more than 10m, the maximum height allowed by atmospheric pressure using a common lift pump.
In a force pump, the upstroke of the piston draws water, through an inlet valve, into the cylinder. On the downstroke, the water is discharged, through an outlet valve, into the outlet pipe.
Answer: Your nose inhales O2 and goes through these little nose hairs to keep stuff that doesn't belong in your airway, it goes through your nose into your lungs taking in O2 for your blood. The other substances that you have inhaled get absorbed elsewhere and it is converted into CO2 which is what you exhale.
Explanation:
Answer:
The work done by this force can be found via the following formula

Explanation:
Alternatively, the work done by the object is equal to the elastic potantial energy done by the spring.

The final velocity of the projectile when it strikes the ground below is 198.51 m/s.
<h3>
Time of motion of the projectile</h3>
The time taken for the projectile to fall to the ground is calculated as follows;
h = vt + ¹/₂gt²
where;
- h is height of the cliff
- v is velocity
- t is time of motion
265 = (185 x sin45)t + (0.5)(9.8)t²
265 = 130.8t + 4.9t²
4.9t² + 130.8t - 265 = 0
solve the quadratic equation using formula method,
t = 1.89 s
<h3>Final velocity of the projectile</h3>
vyf = vyi + gt
where;
- vyf is the final vertical velocity
- vyi is initial vertical velocity
vyf = (185 x sin45) + (9.8 x 1.89)
vyf = 149.322 m/s
vxf = vxi
where;
- vxf is the final horizontal velocity
- vxi is the initial horizontal velocity
vxf = 185 x cos(45)
vxf = 130.8 m/s
vf = √(vyf² + vxf²)
where;
- vf is the speed of the projectile when it strikes the ground below
vf = √(149.322² + 130.8²)
vf = 198.51 m/s
Learn more about final velocity here: brainly.com/question/6504879
#SPJ1