Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
There should be an image that should accompanied your question, I was able to chcek it from other sources. the acceleration of the block when the scale reads 32N is <span>4.0 m/s*s</span>
As the container starts to heat up, so will the neon gas. Heat is nothing but energy, and when you add energy to a gas, it will start vibrating much faster and hit the edges of the container at a higher rate and a faster velocity. Therefore, it's possible to deduce that the container will most likely rupture and/or "explode".
Answer:
The height at point of release is 10.20 m
Explanation:
Given:
Spring constant : K= 5 x 10 to the 3rd power n/m
compression x = 0.10 m
Mass of block m= 0.250 kg
Here spring potential energy converted into potential energy,
mgh = 1/2 kx to the 2 power
For finding at what height it rise,
0.250 x 9.8 x h = 1/2 x 5 x 10 to the 3 power x (0.10)to the 2 power) - ( g= 9.8 m/8 to the 2 power
h= 10.20
Therefore, the height at point of release is 10.20 m
We have by the first law of thermodynamics tha energy is preserved, hence we cannot have over 840kJ per cycle. We have by the laws of thermodynamics (the 2nd one in specific) that the entropy of a system cannot increase. We cannot have an output of 840 kJ per cycle from a heat engine because then that would mean that the entropy would stay the same, while any heat engine increases it. Hence, any value

is acceptable.