The Balmer light series comes under the visible light.
<u>Explanation:</u>
The transition of electrons from higher to energy level with 2 as principal quantum number results in the spectral emission lines of hydrogen atom and this series of lines are known as Balmer series.
Mostly, these lines has the wavelength of more than 400 nm but lesser than 700 nm. Generally of the four categories namely, 410, 434, 486, 656 nm which comes under the type of visible light. So, it can be concluded that the Balmer series light falls under visible light.
In astronomy, Balmer lines occur in various stellar (celestial or astronomical) objects due to the higher content of hydrogen in the universe. Therefore, they are commonly seen and relatively strong when compared to other element lines.
Note: nm is nanometer (one billionth of a meter in length)
Answer:
D) - 0.72 secs
Explanation:
Parameters given:
Height of bridge = 40ft = 12.19 m
Initial velocity of Bill's stone = 0m/s
Initial velocity of Ted's stone = 10m/s
We find the time it take Bill's stone to bit the river and the time it takes Ted's stone to hit the river. Then we find the time difference.
Using one of the equations of motion:
For Bill:
S = ut + ½gt²
Where g = 9.8 m/s
12.19 = 0 + ½*9.8*t²
t² = 12.19/4.9 = 2.49
t = 1.58 secs
For Ted:
S = uT + ½gT²
12.19 = 10*T + ½*9.8*T²
=> 4.9T² + 10T - 12.19 = 0
Using quadratic formula and retaining only the positive value, we get that:
T = 0.86 secs
Time difference between Bill's throw and Ted's throw is:
0.86 - 1.58 = - 0.72 secs
In reality, this means that Ted must throw his stone 0.72 secs before Bill throws his for both stones to land the same time.
Reptiles, such as snakes and lizards, are cold-blooded animals. This means that they do not have the ability to control their body heat. For this reason, they often lay out in the sun to warm up. If their enviornent is cold they obtain that body temperature. They are very slow in colder environments.In cold weather these animals have a very difficult time moving because their muscles are very cold. Without heat in their environment, they cannot warm them up.
The formula for solving voltage is V=IR where V represents the voltage, where "I" represent the current and R represents the resistance. Then, the given values are enumerated below and these will help us in solving for the unknown.
V=10 volts
I=?
R=2 ohms
V=IR
I=V/R
I=10/2
I=5 amperes
Therefore, the current is 5 amperes.