Answer:
Angular acceleration will be 
Explanation:
We have given that mass m = 0.18 kg
Radius r = 0.32 m
Initial angular velocity 
And final angular velocity 
Time is given as t = 8 sec
From equation of motion
We know that 


So angular acceleration will be 
Hey there!
So we know that m*v=P.
And in this question m=30
v=5 m/s
P = 30*5 Kgm/s
P = 150 Kgm/s
So, your final answer is 150 Kg.m/s
Hope this helps! :)
Answer:

Explanation:
According to “Newton's second law”
“Force” is “mass” times “acceleration”, or F = m× a. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Force = mass × acceleration

Given that,
Mass = 5.32 kg


F = 12.7N
Normal force = mg + F sinx,
“m” being the object's "mass",
“g” being the "acceleration of gravity",
“x” being the "angle of the cart"

To find normal force substitute the values in the formula,
Normal force = 5.32 × 9.8 + 12.7 × sin(-28.7)
Normal force = 52.136 + 12.7 × 0.480
Normal force = 52.136 + 6.096
Normal force = 58.232 N
<u>Acceleration of the cart</u>:




Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

<h3>b.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient
the formula is:

where I is the intensity of the beam,
is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:




After travelling 2 cm:




<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:




After travelling 2 cm:



