Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
Answer:
Greater than
Explanation:
Here, angular momentum is conserved.

When the cloud shrinks under the right conditions, a star may be formed.
Thus, Diameter of clouds are much higher than a star.
Moment of inertia of cloud is greater than the star's inertial.
so, angular velocity of the star would be greater than angular velocity of the rotating gas.
1. The correct answer among the choices provided is the third option. Measuring the temperature increase of water from doing work by stirring it is an experiment generally regarded as being first carried out by James Joule.
2. Joule's experiment directly shows that heat is a form of energy. He wanted to make a different way of measuring energy.
The answer is C. Final position minus initial position.
Answer:
not sure. I'll try answering this later
Explanation:
I'm not sure. I'll try answering this later .