I believe that the answer should be B. It makes the most sense to me.
Answer:
you want to know newtons first law here.
Explanation:
An object that is at rest stays at rest or stays in motion.
Answer:
6.96 s
Explanation:
<u>Given:</u>
- u = initial speed of the automobile = 0 m/s
- a = constant acceleration of the automobile =

- v = constant speed of the truck = 8.7 m/s
<u>Assume:</u>
- t = time instant at which the automobile overtakes the truck.
At the moment the automobile and the truck both meat each other the distance travel by both vehicles must be the same.

Since t = 0 s is the initial condition. So, they both meet again at t = 6.96 s such that the automobile overtakes the truck.
The action or process of magnifying something or being magnified, especially visually. Hope this helped
The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4