Answer:
weight at height = 100 N .
Explanation:
The problem relates to variation of weight due to change in height .
Let g₀ and g₁ be acceleration due to gravity , m is mass of the object .
At the surface :
Applying Newton's law of gravitation
mg₀ = G Mm / R²
At height h from centre
mg₁ = G Mm /h²
Given mg₀ = 400 N
400 = G Mm / R²
400 = G Mm / (6400 x 10³ )²
G Mm = 400 x (6400 x 10³ )²
At height h from centre
mg₁ = 400 x (6400 x 10³ )²/ ( 2 x 6400 x 10³)²
= 400 / 4
= 100 N .
weight at height = 100 N
It can hurt and harm the body on many different and levels
Answer:
Sound wave types - longitudinal waves
Longitudinal waves - Vibrating string the creates sound in the way it moves.
Explanation:
Longitudinal waves have particles of the medium that are displaced in a parallel direction to energy transport.
R is proportional to the length of the wire:
R ∝ length
R is also proportional to the inverse square of the diameter:
R ∝ 1/diameter²
The resistance of a wire 2700ft long with a diameter of 0.26in is 9850Ω. Now let's change the shape of the wire, adding and subtracting material as we go along, such that the wire is now 2800ft and has a diameter of 0.1in.
Calculate the scale factor due to the changed length:
k₁ = 2800/2700 = 1.037
Scale factor due to changed diameter:
k₂ = 1/(0.1/0.26)² = 6.76
Multiply the original resistance by these factors to get the new resistance:
R = R₀k₁k₂
R₀ = 9850Ω, k₁ = 1.037, k₂ = 6.76
R = 9850(1.037)(6.76)
R = 69049.682Ω
Round to the nearest hundredth:
R = 69049.68Ω
For part a)
Since the conical surface is not exposed to the radiation coming from the walls only from the circular plate and assuming steady state, the temperature of the conical surface is also equal to the temperature of the circular plate. T2 = 600 K
For part b)
To maintain the temperature of the circular plate, the power required would be calculated using:
Q = Aσ(T₁⁴ - Tw⁴)
Q = π(500x10^-3)²/4 (5.67x10^-8)(600⁴ - 300⁴)
Q = 5410.65 W