Answer:
50kg.m/s
Explanation:
In order to find momentum you must use the formula P=mv
p= momentum
m=mass
v= velocity
so in other words, momentum= mass times velocity
or in this case, momentum= 10 times 5 :)
Answer:
A) 
B) 
Explanation:
Given:
mass of car, 
A)
frequency of spring oscillation, 
We knkow the formula for spring oscillation frequency:




Now as we know that the springs are in parallel and their stiffness constant gets added up in parallel.
<u>So, the stiffness of each spring is (as they are identical):</u>



B)
given that 4 passengers of mass 70 kg each are in the car, then the oscillation frequency:



A. the carbons are unbalanced
B. the hydrogens are unbalanced.
D. the chlorines are unbalanced.
That leaves C. to be correctly balanced.
Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Answer:
Option B, Some of the cars' kinetic energy was converted to sound and heat energy.
Explanation:
In an elastic collision, no energy is lost during and after collision. Thus, it can be said that in an elastic collision both momentum and kinetic energy remains conserved.
While in non-elastic collision, kinetic energy of the system is lost. However, the momentum of the system is conserved. Generally, during and after collision some of the kinetic energy is lost as thermal energy, sound energy etc.
Hence, option B is correct