Answer:
Check the electronic configuration of elements.
Explanation:
▪Valence electrons are the elwctrons present in the outermost shell of any element.
For example,
Electronic Configuration of Sodium = 2,8,1
Here , Sodium has 1 valence electrons.
▪Valency of an element is the total no. of electrons to be gained/losed in order to achieve duplet/octate state.
For example,
Electronic configuration of Sodium = 2,8,1
Sodium can achieve octate state either by losing 1 electron or gaining 7 electrons. But losing 1 electron is eay than gaining 7 electrons. So Valency of Sodium = +1
☆Metals have 1 or 2 or 3 valence electrons.
☆Non metals have 4 or 5 or 6 or 7 valence electrons.
☆Noble gases tend to stay in duplet/octate state i.e they have 2 or 8 valence electrons.
Answer:
It can be formed either through a process of evaporation or sublimation. Unlike clouds, fog, or mist which are simply suspended particles of liquid water in the air, water vapour itself cannot be seen because it is in gaseous form
Explanation:
hope it help
Additional information
Relative atomic mass(Ar) : A=7, G=16
The empirical formula : A₂G
<h3>Further explanation</h3>
Given
3.5g of element A
4.0g of element G
Required
the empirical formula for this compound
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
The empirical formula also shows the simplest mole ratio of the constituent elements of the compound
mol of element A :

mol of element G :

mol ratio A : G = 0.5 : 0.25 = 2 : 1
Question #1
Potasium hydroxide (known)
volume used is 25 ml
Molarity (concentration) = 0.150 M
Moles of KOH used
0.150 × 25/1000 = 0.00375 moles
Sulfuric acid (H2SO4)
volume used = 15.0 ml
unknown concentration
The equation for the reaction is
2KOH (aq)+ H2SO4(aq) = K2SO4(aq) + 2H2O(l)
Thus, the Mole ratio of KOH to H2SO4 is 2:1
Therefore, moles of H2SO4 used will be;
0.00375 × 1/2 = 0.001875 moles
Acid (sulfuric acid) concentration
0.001875 moles × 1000/15
= 0.125 M
Question #2
Hydrogen bromide (acid)
Volume used = 30 ml
Concentration is 0.250 M
Moles of HBr used;
0.25 × 30/1000
= 0.0075 moles
Sodium Hydroxide (base)
Volume used 20 ml
Concentration (unknown)
The equation for the reaction is
NaOH + HBr = NaBr + H2O
The mole ratio of NaOH : HBr is 1 : 1
Therefore, moles of NaOH used;
= 0.0075 moles
NaOH concentration will be
= 0.0075 moles × 1000/20
= 0.375 M