Answer:
P=12.16 atm
Explanation:
Using the formula of ideal gas law:
PV = nRT
P= nRT/V
n= number of moles
R= Avogadro constant = 0.0821
T= Temperature in K => ºC + 273.15 K
P= (1.50 moles)(0.0821)( 296.15 K)/ 3.00L
P= 12.15
Answer:
element S is argon and element T is potassium.
4. B
5. D
Explanation:
in an element in periodic table number of elctrons and protons are same.
4. since element S has 18 protons so its atomic number must be 18 so the element is Argon which is the last element of period 4 so the next element will go to period 4 with one extra shell and since the atomic number of next element is 19 the element is Potassium. therefore T is Potassium.
5. number of nucleons in an atom is the number of protons and neutons combined together in an nucleus
Taking into account the reaction stoichiometry, the correct answer is the third option: 15.63 moles of HgO are needed to produce 250 g of O₂.
In first place, the balanced reaction is:
2 HgO → 2 Hg + O₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- HgO: 2 moles
- Hg: 2 moles
- O₂: 1 moles
The molar mass of the compounds is:
- HgO: 216.59 g/mole
- Hg: 200.59 g/mole
- O₂: 32 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- HgO: 2 moles× 216.59 g/mole= 433.18 grams
- Hg: 2 moles× 200.59 g/mole= 401.18 grams
- O₂: 1 mole× 32 g/mole= 32 grams
Then the following rule of three can be applied: if by reaction stoichiometry 32 grams of O₂ are produced by 2 moles of HgO, 250 grams of O₂ are produced from how many moles of HgO?

<u><em>moles of HgO= 15.625 moles≅ 15.63 moles</em></u>
Finally, the correct answer is the third option: 15.63 moles of HgO are needed to produce 250 g of O₂.
Learn more about reaction stoichiometry:
Answer:
a light ray will always A light ray will always reflect away from a surface at an angle equal to the angle at which it struck the surface
Explanation:
it sound more formal and just plainly better