By itself, i don’t think so.
though, paired with a hydrogen bond, it is.
If i’m wrong, please feel free to let me know :)
Greater absolute charge
- This is because ionic bond results from stronger electrostatic forces of attraction.
- The higher the value of charges q₁ and q₂ the stronger will be the ionic bond.
Thats burning of glucose as fuel in the cells. It generates heat and is an exothermic reaction. In Mitochondria, which act as furnaces, the fuel helps generate heat for the cells of the body.
Answer:
1.03 atm
Explanation:
Primero <u>convertimos 21 °C y 37 °C a K</u>:
- 21 °C + 273.16 = 294.16 K
- 37 °C + 273.16 = 310.16 K
Una vez tenemos las temperaturas absolutas, podemos resolver este problema usando la<em> ley de Gay-Lussac</em>:
En este caso:
Colocando los datos:
- 294.16 K * P₂ = 310.16 K * 0.98 atm
Y <u>despejando P₂</u>:
Explanation:
As it is known that there are two types of properties. These are extensive and intensive.
Extensive properties : Properties that depend on the size or amount of system. For example, mass, volume etc.
Intensive properties : Properties that do not depend on the size or amount of system. For example, density, melting point, specific heat capacity etc.
On the basis of these properties water and ethanol are distinguished as follows.
- Density of water is 997 kg/
whereas density of ethanol is 789 kg/
. Both these liquids can be separated by intensive properties. - Melting point of water is zero degree celsius whereas melting point of ethanol is -114.1 degree celsius.
- Specific heat capacity of water is 4.184
whereas specific heat capacity of ethanol is 2.46
. - Mass of the given liquids cannot be differentiated because they will keep on changing depending on the quantity required. As mass is an extensive property, therefore, it is difficult to differentiate between the two liquids.
Thus, we can conclude that properties like density, melting point, specific heat capacity can help a chemist distinguish between ethanol and water.