Answer:
II. The reaction is exothermic.
III. The enthalpy term would be different if the water formed was gaseous.
Explanation:
For the reaction:
C₂H₅OH(l) + 3O₂(g) → 2CO₂(g) + 3H₂O(l)
The ΔH is -1.37×10³ kJ. As the change in enthalpy is <0,<em> II. The reaction is exothermic.</em>
The ΔH formation of a compound is different if the chemical is in liquid or gaseous phase. For that reason: <em>III. The enthalpy term would be different if the water formed was gaseous.</em>
<em></em>
I hope it helps!
<u>Answer:</u> The activation energy for the reaction is 40.143 kJ/mol
<u>Explanation:</u>
To calculate activation energy of the reaction, we use Arrhenius equation for two different temperatures, which is:
![\ln(\frac{K_{317K}}{K_{278K}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B317K%7D%7D%7BK_%7B278K%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 317 K = 
= equilibrium constant at 278 K = 
= Activation energy = ?
R = Gas constant = 8.314 J/mol K
= initial temperature = 278 K
= final temperature = 317 K
Putting values in above equation, we get:
![\ln(\frac{3.050\times 10^8}{3.600\times 10^{7}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{278}-\frac{1}{317}]\\\\E_a=40143.3J/mol=40.143kJ/mol](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B3.050%5Ctimes%2010%5E8%7D%7B3.600%5Ctimes%2010%5E%7B7%7D%7D%29%3D%5Cfrac%7BE_a%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B278%7D-%5Cfrac%7B1%7D%7B317%7D%5D%5C%5C%5C%5CE_a%3D40143.3J%2Fmol%3D40.143kJ%2Fmol)
Hence, the activation energy for the reaction is 40.143 kJ/mol
A population is the amount of people that live in a area like a country or state
False, because a personal talent can be something such as your adaptability or ability to make friends, which cannot be displayed in a talent show.
A. in a polar bond, electrons are shared