<span>NO2 weighs 46.005 grams per mol. There are 6.02x10^23 molecules in a mol. In the given sample of 189.5 grams, there are 4.12 mols. This means that there are 2.48x10^24 molecules of NO2 in the given sample.</span>
Answer:
radius = 156 pm
Explanation:
The relation between radius and edge length of unit cell of BCC is
r=a
/4
Given
a = 360 pm
Therefore
r = r = radius = 360
/4= 155.88 pm
Or
156 pm
HCl is an acid
C5H5N is a base
Cl- is a base
HC5H5N+ is an acid
The age of the fossil given the present amount of Carbon-14 is given in the equation,
A(t) = A(o)(0.5)^t/h
where A(t) is the current amount, A(o) is the initial amount, t is time and h is the half-life. Substituting the known values to the equation,
A(t) / A(o) = 0.125 = (0.5)^(t/5730)
The value of t from the equation is 17190.
Thus, the age of the fossil is mostly likely to be 17190 years old.
Answer:
WCl₂, WCl₄, WCl₅, WCl₆
Explanation:
Molar Mass of Tungsten = 184 g/mol
Mass of Chlorine = 35.5 g/mol
In the first compound;
Percentage of tungsten = 72.17 %
Upon solving;
72.17 % = 184
100 % = Total mass
Total mass of compound = 254.95g
Mass of chlorine = 254.95 - 184 = 70.95 (Dividing by 35.35; This is approximately 2 Chlorine atoms.
The Formular is WCl₂
In the second compound;
Percentage of tungsten = 56.45 %
Upon solving;
56.45 % = 184
100 % = Total mass
Total mass of compound = 325.95 g
Mass of chlorine = 325.95 - 184 = 141.95g (Dividing by 35.35; This is approximately 4 Chlorine atoms.
The Formular is WCl₄
In the third compound;
Percentage of tungsten = 50.91 %
Upon solving;
50.91 % = 184
100 % = Total mass
Total mass of compound = 361.42 g
Mass of chlorine = 361.42 - 184 = 177.42 (Dividing by 35.35; This is approximately 5 Chlorine atoms.
The Formular is WCl₅
In the fourth compound;
Percentage of tungsten = 46.39 %
Upon solving;
46.39 % = 184
100 % = Total mass
Total mass of compound = 396.64 g
Mass of chlorine = 396.64 - 184 = 212.64 (Dividing by 35.35; This is approximately 6 Chlorine atoms.
The Formular is WCl₆