Answer:
Zn =⇒ Zn+2(0.10) + 2e- (anode)
Zn+2(?M) + 2e- === Zn(s) (cathode)
Zn + Zn+2(?M) ===⇒ Zn+2(0.10) + Zn
E = E^o -0.0592 log Q; in this case E^o is zero.
E = - 0.0592 /n logQ where n is the number of electrons transferred, in this
case n = 2
23 mV x 1 volt/1000mv = 0.023 Volts
0.023 = -0.0592 / 2 log(0.10) / [Zn+2]
0.023 = -0.0296 { log 0.10 – log [Zn+2] }
0.023 = -0.0296{ -1 - log[Zn+2] }
0.023 = +0.0296 + 0.0296log[Zn+2]
-0.0066 = 0.0296log[Zn+2]
-0.22= log[Zn+2]
[Zn+2] = 10^-0.22 = 0.603 Molar
The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.
The reaction is missing the Zn(s) in the reactants. The stoichiometry of the copper/zinc is 1 mole to 1 mole
Each of the Nitrogen atoms has 2 non bonded valence electrons, meaning that there are 4 pairs total.
Answer:
The answer is 7600 nm.
Explanation:
As, Y = 0.25 = [ L ÷ (400 + (L)]
0.95 x 400 + 0.25 [ L] = [ L ]
380.25 = [ L ] - 0.95 [ L ]
= 0.05 [L]
[L] = 380 ÷ 0.05 = 7600nm