Answer:
The resistivity of materials depends on the temperature as ρt = ρ0 [1 + α (T – T0). This is the equation that shows the relationship between the resistivity and the temperature.
hope it helps
By the definition of wavelength, the answer is the letter D, the wavelength would decrease.
We can see in the diagram a wave motion.
A wave has some characteristics:
- Has an amplitude, the distance from 0 to the crest (highest point in the y-direction, point (3) in the figure) it would see in the figure as (2)
- Has wavelength, the distance between the crests.
- Has a trough, the lowest point in the y-direction.
Now, if we increase the distance of the crests, by the definition shown above, we will increase the wavelength.
Therefore, the answer is letter D, the wavelength would increase.
You can learn more about wave motion here:
brainly.com/question/22763521
Answer:
3.7 m/s
Explanation:
M = 444 kg
U = 5 m/s
m = 344 kg
u = - 5 m/s
Let the velocity of train is V and the car s v after the collision.
As the collision is elastic
By use of conservation of momentum
MU + mu = MV + mv
444 x 5 - 344 x 5 = 444 V + 344 v
500 = 444 V + 344 v
125 = 111 V + 86 v .... (1)
By using the formula of coefficient of restitution ( e = 1 for elastic collision)

-5 - 5 = V - v
V - v = - 10
v = V + 10
Substitute the value of v in equation (1)
125 = 111 V + 86 (V + 10)
125 = 197 V + 860
197 V = - 735
V = - 3.7 m/s
Thus, the speed of first car after collision is 3.7 m/s. negative sign shows that the direction is reverse as before the collision.
Answer:
The force required to push to stop the car is 288.67 N
Explanation:
Given that
Mass of the car, m = 1000 kg
Initial speed of the car, u = 1 m/s
The car and push on the hood at an angle of 30° below horizontal, 
Distance, d = 2 m
Let F is the force must you push to stop the car.
According work energy theorem theorem, the work done is equal to the change in kinetic energy as :



The force required to push to stop the car is 288.67 N
Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²