Answer: The hydroxide concentration of this sample is 
Explanation:
When an expression is formed by taking the product of concentration of ions raised to the power of their stoichiometric coefficients in the solution of a salt is known as ionic product.
The ionic product for water is written as:
![K_w=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
![7.7\times 10^{-14}=[H^+]\times [OH^-]](https://tex.z-dn.net/?f=7.7%5Ctimes%2010%5E%7B-14%7D%3D%5BH%5E%2B%5D%5Ctimes%20%5BOH%5E-%5D)
As ![[H^+]=[OH^-]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BOH%5E-%5D)
![2[OH^-]=7.7\times 10^{-14}](https://tex.z-dn.net/?f=2%5BOH%5E-%5D%3D7.7%5Ctimes%2010%5E%7B-14%7D)
![[OH^-]=3.85\times 10^{-7}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3.85%5Ctimes%2010%5E%7B-7%7D)
Thus hydroxide concentration of this sample is 
Nun nun hmm I’m ummm I don’t wanna see how much
Answer:
0.576M and 0.655m
Explanation:
<em>...Dissolves 15.0g of styrene (C₈H₈) in 250.mL of a solvent with a density of 0.88g/mL...</em>
<em />
Molarity is defined as moles of solute (Styrene in this case) per liter of solution whereas molality is the moles of solute per kg of solvent. Thus, we need to find the moles of styrene, the volume in liters of the solution and the mass in kg of the solvent as follows:
<em>Moles styrene:</em>
Molar mass C₈H₈:
8C = 12.01g/mol*8 = 96.08g/mol
8H = 1.005g/mol* 8 = 8.04g/mol
96.08g/mol + 8.04g/mol = 104.12g/mol
Moles of 15.0g of styrene are:
15.0g * (1mol / 104.12g) = 0.144 moles of styrene
<em>Liters solution:</em>
250mL * (1L / 1000mL) = 0.250L
<em>kg solvent:</em>
250mL * (0.88g/mL) * (1kg / 1000g) = 0.220kg
Molarity is:
0.144 moles / 0.250L =
<h3>0.576M</h3>
Molality is:
0.144 moles / 0.220kg =
<h3>0.655m</h3>