<u>Answer:</u> The standard heat for the given reaction is -138.82 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles.
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H_f_{(product)}]-\sum [n\times \Delta H_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(3\times \Delta H_f_{(CH_4(g))})+(1\times \Delta H_f_{(CO_2(g))})+(4\times \Delta H_f_{(NH_3(g))})]-[(4\times \Delta H_f_{(CH_3NH_2(g))})+(2\times \Delta H_f_{(H_2O(l))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H_f_%7B%28CH_4%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H_f_%7B%28NH_3%28g%29%29%7D%29%5D-%5B%284%5Ctimes%20%5CDelta%20H_f_%7B%28CH_3NH_2%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(3\times (-74.8))+(1\times (-393.5))+(4\times (-46.1))]-[(4\times (-22.97))+(2\times (-285.8))]\\\\\Delta H_{rxn}=-138.82kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%283%5Ctimes%20%28-74.8%29%29%2B%281%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-46.1%29%29%5D-%5B%284%5Ctimes%20%28-22.97%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-138.82kJ)
Hence, the standard heat for the given reaction is -138.82 kJ
Answer:
Ok so, b. A redox reaction occurs in an electrochemical cell, where silver (Ag) is oxidized and nickel (Ni) is reduced - In voltaic cells, also called galvanic cells, oxidation occurs at the anode and reduction occurs at the cathode. A mnemonic for this is "An Ox. Red Cat." So since silver is oxidized, the silver half-cell is the anode. And the nickel half-cell is the cathode...
i. Write the half-reactions for this reaction, indicating the oxidation half-reaction and the reduction half-reaction- The substance having highest positive  potential will always get reduced and will undergo reduction reaction. Here, zinc will always undergo reduction reaction will get reduced
ii. Which metal is the anode, and which is the cathode?-The anode is where the oxidation reaction takes place. In other words, this is where the metal loses electrons. The cathode is where the reduction reaction takes place.
iii. Calculate the standard potential (voltage) of the cell
Look up the reduction potential,
E
⁰
red
, for the reduction half-reaction in a table of reduction potentials
Look up the reduction potential for the reverse of the oxidation half-reaction and reverse the sign to obtain the oxidation potential. For the oxidation half-reaction,
E
⁰
ox
=
-
E
⁰
red
.
iv. What kind of electrochemical cell is this? Explain your answer.
All parts in the electrochemical cells are labeled in second figure. Following are the part in electrochemical cells
1) Anode 2) Cathode 3) gold Stripe (Electrode) 4) Aluminium Glasses (Electrode) 5) Connecting wires 6) Battery
Explanation:
Nitrogen fixation is the process that makes atmospheric nitrogen available to plants by mutualistic and free-living bacteria. The process is undertaken by the rhizobium bacteria that live in root roots of plants such as legumes. The mutualistic relationship is that the plant supplies the bacteria with a habitat in which to live, water, and nutrients, and the bacteria supply nitrogen for making plant proteins.