The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25
Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
Well,
A = T or U
C = G
G = C
T or U = A
So it would be like this;
DNA Sequence: GCTAATTGCATCCGA
The Complementary Sequence: CGATTAACGTAGGCT
Hope this helped :)
Answer:
gexp = 3.65 m/s²
Explanation:
The value of acceleration due to gravity changes with the altitude. The following formula gives the value of acceleration due to gravity at some altitude from the sea level:
gexp = g(1 - 2h/Re)
where,
gexp = expected value of g at altitude = ?
g = acceleration due to gravity at sea level = 9.8 m/s²
h = altitude = 2000 km = 2 x 10⁶ m
Re = Radius of Earth = 6.37 x 10⁶ m
Therefore,
gexp = (9.8 m/s²)(1 - 2*2 x 10⁶ m/6.37 x 10⁶ m)
<u>gexp = 3.65 m/s²</u>