EA SPORTS its in the THE GAME
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129
Answer:
Incomplete question: "Each block has a mass of 0.2 kg"
The speed of the two-block system's center of mass just before the blocks collide is 2.9489 m/s
Explanation:
Given data:
θ = angle of the surface = 37°
m = mass of each block = 0.2 kg
v = speed = 0.35 m/s
t = time to collision = 0.5 s
Question: What is the speed of the two-block system's center of mass just before the blocks collide, vf = ?
Change in momentum:




It is neccesary calculate the force:

Here, g = gravity = 9.8 m/s²


Answer:
Explanation: P = 300 W and t = 2 min = 120 s
Energy Q = Pt = 300 W · 120 s = 36 000 J.
Thus, plate can not produce 45 000 J heat.
Impulse = (force) x (time)
The first impulse was (20 N) x (10 sec) = 200 meters/sec
The second one is (50 N) x (time) and we want it equal to the first one, so
(50 N) x (time) = 200 meters/sec
Divide each side by 50N : Time = 200/50 = <em>4 seconds</em>
By the way, the quantity we're playing with here is the cart's <em>momentum</em>.