1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
14

Which change of state has the wrong energy change listed? condensation deposition melting freezing

Physics
2 answers:
ipn [44]3 years ago
6 0
Where are the energy changes?
REY [17]3 years ago
5 0

It's deposition so be.  It should say deposition gains when it actually loses energy.

You might be interested in
A satellite that goes around the earth once every 24 hours (86,400 s) is called a geosynchronous satellite. If a geosynchronous
Olegator [25]

Answer:

42244138.951 m

Explanation:

G = Gravitational constant = 6.667 × 10⁻¹¹ m³/kgs²

r = Radius of orbit from center of earth

M = Mass of Earth = 5.98 × 10²⁴ kg

m = Mass of Satellite

The satellite revolves around the Earth at a constant speed

Speed = Distance / Time

The distance is the perimeter of the orbit

v=\frac{2\pi \times r}{24\times 3600}

The Centripetal force of the satellite is balanced by the universal gravitational force

m\frac{v^2}{r}=\frac{GMm}{r^2}\\\Rightarrow \frac{\left(\frac{2\pi \times r}{24\times 3600}\right)^2}{r}=\frac{6.667\times 10^{-11}\times 5.98\times 10^{24}}{r^2}\\\Rightarrow \left(\frac{2\pi \times r}{24\times 3600}\right)^2=6.667\times 10^{-11}\times 5.98\times 10^{24}\\\Rightarrow r^3=\frac{6.667\times 10^{-11}\times 5.98\times 10^{24}\times (24\times 3600)^2}{(2\pi)^2}\\\Rightarrow r=\left(\frac{6.667\times 10^{-11}\times 5.98\times 10^{24}\times (24\times 3600)^2}{(2\pi)^2}\right)^{\frac{1}{3}}\\\Rightarrow r=42244138.951\ m

The radius as measured from the center of the Earth) of the orbit of a geosynchronous satellite that circles the earth is 42244138.951 m

6 0
3 years ago
FREE BRAINLEST JUST COMMENT MRBEAST
Pepsi [2]

Answer:

MRBEAST-

Explanation:

6 0
3 years ago
Read 2 more answers
The total kinetic energy of two cars is measured before and after they crash into each other. The total kinetic energy of the tw
jenyasd209 [6]

Answer:

Option B, Some of the cars' kinetic energy was converted to sound and heat energy.

Explanation:

In an elastic collision, no energy is lost during and after collision. Thus, it can be said that in an elastic collision both momentum and kinetic energy remains conserved.  

While in non-elastic collision, kinetic energy of the system is lost. However, the momentum of the system is conserved. Generally, during and after collision some of the kinetic energy is lost as thermal energy, sound energy etc.  

Hence, option B is correct

4 0
3 years ago
The 1.0-kg collar slides freely on the fixed circular rod. Calculate the velocity v of the collar as it hits the stop at B if it
soldi70 [24.7K]

Answer:

6.21 m/s

Explanation:

Using work energy equation then

U_{1-2}=T_B- T_A\\58d-mgh=0.5m(v_b^{2}-v_a^{2})

where d is displacement from initial to final position, v is velocity and subscripts a and b are position A and B respectively, m is mass of collar, g is acceleration due to gravity

Substituting 1 Kg for m, 0.4m for h, v_a as 0, 9.81 for g then

58(\sqrt{0.4^{2}+0.3^{2}}-0.1)-(1\times 9.81\times 0.4)=0.5\times 1\times (v_b^{2}-v_a^{2})\\19.276=0.5\times 1v_b^{2}\\v_b=6.209025688 m/s\approx 6.21 m/s

7 0
3 years ago
A basketball player jumps straight up for a ball. To do this, he lowers his body 0.310 m and then accelerates through this dista
Nastasia [14]

Answer:A)u =4.295m/s  , B)a = 29.746m/s²   C) F=3,153N

Explanation:

Using the kinematic expression  

v² = u² - 2as

where

u = initial velocity

v = final velocity

s = distance

g = acceleration due to gravity .

Given that he reaches a height of 0.940 m above the floor,

the final velocity  = 0

Here, acceleration due to gravity is acting in  opposite the initial direction of motion. So, a=-9.81 m/s.

v² = u² + 2as

0² - u² = 2 (- 9.81) × 0.940

- u² = 2 × - 9.81 × 0.920

- u² = -18.4428

cancelling the minus in both sides , we have that  

u² = 18.4428

u = √18.4428

u =4.295m/s

(b) His acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.310 m. m/s2

Using v² = u² + 2as

where u = initial speed of basketball player before lengthening = 0 m/s,

v = final speed of basketball player after lengthening =  4.295m/s,

a = acceleration while  straightening his legs

s = distance moved during lengthening = 0.310m

v² = u² + 2as  

 a = (v² - u²)/2s

a = (4.29m/s)² - (0 m/s)²)/(2 × 0.310m)

a = (18.4428 m²/s² - 0 m²/s²)/(0.62 m)

a = (18.4428 m²/s²/(0.62 m)

a = 29.746m/s²

c) The force (in N) he exerts on the floor to do this, given that his mass is 106 kg. N

Force= mass x acceleration.

F = 106 kg X 29.746m/s²

 F = 3,153.076 rounded to  3,153N

8 0
3 years ago
Other questions:
  • You are at home in your air conditioned garage. You are planning a family road trip from New York to Florida. You are lnfating t
    9·1 answer
  • In all chemical reactions, __________ and ____________ must be conserved. energy, matter atoms, heat enthalpy, energy
    11·1 answer
  • Starting at 1.0 m/s, a cheetah runs with a constant acceleration for 4.8 s reaching a speed of 28 m/s. What is the acceleration
    9·1 answer
  • What do all elements have in common?
    10·1 answer
  • A stone with a weight of 5.30 N is launched vertically from ground level with an initial speed of 23.0 m/s, and the air drag on
    5·1 answer
  • When a rattlesnake strikes, its head accelerates from rest to a speed of 28 m/s in 0.65 seconds. Assume for simplicity that the
    9·1 answer
  • How does natural selection produce change in a population of mice?
    7·1 answer
  • If a roller coaster has 50,000 J of potential energy at the top of the first hill, how much kinetic energy does it have at the l
    13·1 answer
  • here ya go lol always with the warning "Don't use such phrases here, not cool! It hurts our feelings"
    14·2 answers
  • The mass of an object is 84 kg. Find its weight on the Earth and the Moon.​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!