Answer:
0.1040512455 N

0.05925 N

Explanation:
I = Current
B = Magnetic field
Separation between end points is

Effective force is given by

The force is 0.1040512455 N

The angle the force makes is given by

The direction is 

The force is 0.05925 N


The direction is 
The base of the pyramid has the producers and everything else above the base falls under the consumers category i.e the locusts,frogs and the snake. The grass is the producer, the locust is a consumer, the frog is a special type of omnivore, termed the "life-history omnivore" since they eat both plants and animals but at different times in their lives. In this case they are just omnivores and lastly, the snake is a carnivore.
The Formula Bar is where data or formulas you enter into a worksheet appear for the active cell. The Formula Bar can also be used to edit data or formula in the active cell. The active cell displays the results of its formula while we see the formula itself in the Formula Bar.
mark me brainliestt :))
Answer: thickness h = 0.014cm
Question: In the manufacturing of computer chips, cylinders of silicon are cut into thin wafers that are 3.30 inches in diameter and have a mass of 1.50 g of silicon. How thick (mm) is each wafer if silicon has a density of 2.33 g/cm 3 ? (The volume of a cylinder is V=πr 2 h )
Explanation:
The volume of a cylinder is
Volume V = πr^2h ....1
The density of a material is
Density D = mass m / volume V
D = m/V ....2
Since m and D are given, we can make V the subject of formula.
V = m/D ....3
From equation 1, we need to derive the thickness h of the cylindrical silicon.
h = V/πr^2 .....4
Substituting equation 3 into 4
h = (m/D)/πr^2 .....5
Given.
mass m = 1.50g
density D = 2.33g/cm^3
radius r = diameter/2 = 3.00in/2 = 7.62/2 cm = 3.81cm
Substituting the given values into the equation
h = (1.5/2.33)/(π ×3.81^2)
thickness h = 0.014cm
k = 5.29
a = 0.78m/s²
KE = 0.0765J
<u>Explanation:</u>
Given-
Mass of air tracker, m = 1.15kg
Force, F = 0.9N
distance, x = 0.17m
(a) Effective spring constant, k = ?
Force = kx
0.9 = k X0.17
k = 5.29
(b) Maximum acceleration, m = ?
We know,
Force = ma
0.9N = 1.15 X a
a = 0.78 m/s²
c) kinetic energy, KE of the glider at x = 0.00 m.
The work done as the glider was moved = Average force * distance
This work is converted into kinetic energy when the block is released. The maximum kinetic energy occurs when the glider has moved 0.17m back to position x = 0
As the glider is moved 0.17m, the average force = ½ * (0 + 0.9)
Work = Kinetic energy
KE = 0.450 * 0.17
KE = 0.0765J