Answer:
a = 0.009 J
b = 0.19 m/s
c = 0.005 J and 0.004 J
Explanation:
Given that
Mass of the object, m = 0.5 kg
Spring constant of the spring, k = 20 N/m
Amplitude of the motion, A = 3 cm = 0.03 m
Displacement of the system, x = 2 cm = 0.02 m
a
Total energy of the system, E =
E = 1/2 * k * A²
E = 1/2 * 20 * 0.03²
E = 10 * 0.0009
E = 0.009 J
b
E = 1/2 * k * A² = 1/2 * m * v(max)²
1/2 * m * v(max)² = 0.009
1/2 * 0.5 * v(max)² = 0.009
v(max)² = 0.009 * 2/0.5
v(max)² = 0.018 / 0.5
v(max)² = 0.036
v(max) = √0.036
v(max) = 0.19 m/s
c
V = ±√[(k/m) * (A² - x²)]
V = ±√[(20/0.5) * (0.03² - 0.02²)]
V = ±√(40 * 0.0005)
V = ±√0.02
V = ±0.141 m/s
Kinetic Energy, K = 1/2 * m * v²
K = 1/2 * 0.5 * 0.141²
K = 1/4 * 0.02
K = 0.005 J
Potential Energy, P = 1/2 * k * x²
P = 1/2 * 20 * 0.02²
P = 10 * 0.0004
P = 0.004 J
Answer: acceleration due to gravity of planet a would be twice that of planet b. Given that the radius are thesame.
Explanation:
Acceleration due to gravity is as a result of the gravitational force of attraction of a planet to its centre.
g = GM/r^2
Where;
g = acceleration due to gravity
G = gravitational constant
M = mass of planet
r = radius of planet
Given that the two planet have the same radius, if the mass of planet a is twice the mass of planet b the the acceleration due to gravity of planet a would be twice that of planet b, because acceleration due to gravity is directly proportional to the mass of the planet.
Answer:
As the velocity of light is constant so the acceleration of the light is equal to zero.
a= dv/dt
Explanation:
Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>
The answer to this question is a) sulfur