F=dP/dt. So you want the momentum to change as slowly as possible in time to minimize the force. So as you catch the egg, let your hand move backward with it for awhile, slowly bringing it to a stop. If you hold your hand steady when you catch it the force due to the impact could break it.
This question apparently wants you to get comfortable
with E = m c² . But I must say, this question is a lame
way to do it.
c = 3 x 10⁸ m/s
E = m c²
1.03 x 10⁻¹³ joule = (m) (3 x 10⁸ m/s)²
Divide each side by (3 x 10⁸ m/s)²:
Mass = (1.03 x 10⁻¹³ joule) / (9 x 10¹⁶ m²/s²)
= (1.03 / 9) x (10⁻¹³ ⁻ ¹⁶) (kg)
= 1.144 x 10⁻³⁰ kg . (choice-1)
This is roughly the mass of (1 and 1/4) electrons, so it seems
that it could never happen in nature. The question is just an
exercise in arithmetic, and not a particularly interesting one.
______________________________________
Something like this could have been much more impressive:
The Braidwood Nuclear Power Generating Station in northeastern
Ilinois USA serves Chicago and northern Illinois with electricity.
<span>The station has two pressurized water reactors, which can generate
a net total of 2,242 megawatts at full capacity, making it the largest
nuclear plant in the state.
If the Braidwood plant were able to completely convert mass
to energy, how much mass would it need to convert in order
to provide the total electrical energy that it generates in a year,
operating at full capacity ?
Energy = (2,242 x 10⁶ joule/sec) x (86,400 sec/day) x (365 da/yr)
= (2,242 x 10⁶ x 86,400 x 365) joules
= 7.0704 x 10¹⁶ joules .
How much converted mass is that ?
E = m c²
Divide each side by c² : Mass = E / c² .
c = 3 x 10⁸ m/s
Mass = (7.0704 x 10¹⁶ joules) / (9 x 10¹⁶ m²/s²)
= 0.786 kilogram ! ! !
THAT should impress us ! If I've done the arithmetic correctly,
then roughly (1 pound 11.7 ounces) of mass, if completely
converted to energy, would provide all the energy generated
by the largest nuclear power plant in Illinois, operating at max
capacity for a year !
</span>
<h2>Answer: It becomes an Ion
</h2>
When an atom has gained or lost electrons (negative charge), it becomes an ion.
In this sense:
<h2>I
ons are atoms that have <u>
gained or lost</u>
electrons in their electronic cortex.
</h2><h2>
</h2>
If a neutral atom <u>loses electrons</u>, it remains with an excess of positive charge and transforms into a positive ion or <u>cation</u>, whereas if a neutral atom <u>gains electrons</u>, it acquires an excess of negative charge and transforms into a negative ion or <u>anion</u>.
It is then how ions form bonds with other atoms differently depending on the number of electrons they have.
Represent the sleaze time speed time and acceleration time graphs
Mass of gold m₁ = 47 g
Initial temperature of gold T₁ = 99 C
Specific heat of gold C₁ = 0.129 J/gC
final temperature T₂ = 38 C
Heat needed by the gold to cool down
Q =m₁ * C₁* ( T₁ - T₂)
Q = (47)(0.129)(99-38)
Q = 369.843 J
This heat will be given by the water
we need to find out mass of water m₂
and initial temperature of water is T₃ = 25 C
Specific heat of water C₂ = 4.184 J/gC
Q = m₂*C₂*(T₂ - T₃)
369.843 = m₂(4.184)(38-25)
m₂ = 6.8 g