Answer:
Object A
Explanation:
The object that would make you feel worse if you're hit by it is the object possessing the highest momentum. Thus, we need to find the momentum of the two objects.
Momentum of an object is the product of its mass and that of it's velocity. Momentum is given by the formula
P = M * V, where
P = momentum
M = mass of the object
V = velocity of the object
Now, solving for object A, we have
P(a) = 1.1 * 10.2
P(a) = 11.22 kgm/s
And then, solving for object B, we have
P(b) = 2 * 5
P(b) = 10 kgm/s
The object when the highest momentum is object A, and thus would make you feel worse when hit by it
Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft
Explanation:
1. use the position (x) equation in parobolic movement to find the time (t)
565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°) * t
t= 3.92 s
2. use the position (y) equation in parabolic movement to find de maximun heigth the ball reaches at 565 ft from the home plate.
y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - 
y= 148.32 ft
3. finally add the 3 ft that exist between the home plate and the ball
148.32 ft + 3 ft = 151.32
Answer:you riding your bike at 12m/s
Explanation: this is because momentum P = mass x velocity. With a bigger mass and a velocity of about 12m/s, you really have a great momentum.
Answer:
M_c = 100.8 Nm
Explanation:
Given:
F_a = 2.5 KN
Find:
Determine the moment of this force about C for the two cases shown.
Solution:
- Draw horizontal and vertical vectors at point A.
- Take moments about point C as follows:
M_c = F_a*( 42 / 150 ) *144
M_c = 2.5*( 42 / 150 ) *144
M_c = 100.8 Nm
- We see that the vertical component of force at point A passes through C.
Hence, its moment about C is zero.
Answer:
heat it up to above 176f or apply alternating current
Explanation: