Answer:
<em>3924 Pa</em>
<em></em>
Explanation:
Volume of cylinder = 2 L = 0.002 m^3 (1000 L = 1 m^3)
diameter of the inner cylinder = 8 cm = 0.08 m (100 cm = 1 m)
radius of the inner cylinder = diameter/2 = 0.08/2 = 0.04 m
area of the inner cylinder = 
where
= 3.142,
and r = radius = 0.04 m
area of inner cylinder = 3.142 x
= 0.005 m^2
<em>height h of the water in this cylinder = volume/area</em>
h = 0.002/0.005 = 0.4 m
<em>pressure at the bottom of the cylinder due to the height of water = pgh</em>
where
p = density of water = 1000 kg/m^3
g = acceleration due to gravity = 9.81 m/s^2
h = height of water within this cylinder = 0.4 m
pressure = 1000 x 9.81 x 0.4 = <em>3924 Pa</em>
Answer:Draw a T-s diagram for the ideal Rankine Cycle
Explanation:
Answer:
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Explanation:
As we know that the relation between electric field and electric potential is given as

here if we say that potential is constant because electric field sensor is moving along equi-potential line.
Then we will say
V = constant
so we have

so electric field will remain constant always in magnitude and always remains perpendicular to the surface
so we have
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
The answer is C. An occluded front.
Answer:
r = 6.5*10^-3 m
Explanation:
I'm assuming you meant to ask the diameters of the disk, if so, here's it
Given
Quantity of charge on electron, Q = 1.4*10^9
Electric field strength, e = 1.9*10^5
q = Q * 1.6*10^-19
q = 2.24*10^-10
E = q/ε(0)A, making A the subject of formula, we have
A = q / [E * ε(0)], where
ε(0) = 8.85*10^-12
A = 2.24*10^-10 / (1.9*10^5 * 8.85*10^-12)
A = 2.24*10^-10 / 1.6815*10^-6
A = 1.33*10^-4 m²
Remember A = πr²
1.33*10^-4 = 3.142 * r²
r² = 1.33*10^-4 / 3.142
r² = 4.23*10^-5
r = 6.5*10^-3 m