1. The growth rate equation has a general form of:
y = A (r)^t
The function is growth when r≥1, and it is a decay when
r<1. Therefore:
y=200(0.5)^2t -->
Decay
y=1/2(2.5)^t/6 -->
Growth
y=(0.65)^t/4 -->
Decay
2. We rewrite the given equation (1/3)^d−5 = 81
Take the log of both sides:
(d – 5) log(1/3) = log 81
d – 5 = log 81 / log(1/3)
d – 5 = - 4
Multiply both sides by negative 1:
- d + 5 = 4
So the answer is D
Answer:
x =1/12(1-√(97) )
Step-by-step explanation:
Answer:
Point C
Step-by-step explanation:
because the number is 0.3 you need to start at zero on the number line and go forward 3 marks. That will lead you to your answer of 0.3
Answer:
x=5+b/2
Step-by-step explanation:
move all terms that dont contain x to the right, and solve
Answer:
Perimeter of the ΔDEF = 10.6 cm
Step-by-step explanation:
The given question is incomplete; here is the complete question with attachment enclosed with the answer.
D, E, and F are the midpoints of the sides AB, BC, and CA respectively. If AB = 8 cm, BC = 7.2 cm and AC = 6 cm, then find the perimeter of ΔDEF.
By the midpoint theorem of the triangle,
Since D, E, F are the midpoints of the sides AB, BC and CA respectively.
Therefore, DF ║ BC and 
FD = 
= 3.6
Similarly, 

FE = 4 cm
And 
DE = 
= 3 cm
Now perimeter of ΔDEF = DE + EF + FD
= 3 + 4+ 3.6
= 10.6 cm
Perimeter of the ΔDEF is 10.6 cm.