Well it breaks it away from rain or earthqukes depends but then depostion takes the rocks away and a delta takes it into the ocean
Answer:
The magnitude of the frictional force is 48.02 N
Explanation:
Mass of box = 20 kg
Weight of the box (Normal reaction) = mass × acceleration due to gravity = 20 ×9.8 = 196 N
Horizontal force applied = 48 N
Coefficient of friction = horizontal force ÷ normal reaction = 48 ÷ 196 = 0.245
Frictional force = coefficient of friction × normal reaction = 0.245 × 196 N = 48.02 N

Here's a explanation!
Let's solve your equation step-by-step.


Step 1: Multiply both sides by x.


(Divide both sides by 4).


Take the root.
ANSWER!

Hopefully, this helps you!!

Answer:
1.19 m/s²
Explanation:
The frequency of the wave generated in the string in the first experiment is f = n/2l√T/μ were T = tension in string = mg were m = 1.30 kg weight = 1300 g , μ = mass per unit length of string = 1.01 g/m. l = length of string to pulley = l₀/2 were l₀ = lent of string. Since f is the second harmonic, n = 2, so
f = 2/2(l₀/2)√mg/μ = 2(√mg/μ)/l₀ (1)
Also, for the second experiment, the period of the wave in the string is T = 2π√l₀/g. From (1) l₀ = 2(√mg/μ)/f and from (2) l₀ = T²g/4π²
Equating (1) and (2) we ave
2(√mg/μ)/f = T²g/4π²
Making g subject of the formula
g = 2π√(2√(m/μ)/f)/T
The period T = 316 s/100 = 3.16 s
Substituting the other values into , we have
g = 2π√(2√(1300 g/1.01 g/m)/200 Hz)/3.16
g = 2π√(2 × 35.877/200 Hz)/3.16
g = 2π√(71.753/200 Hz)/3.16
g = 2π√(0.358)/3.16
g = 2π × 0.599/3.16
g = 1.19 m/s²