Answer:
The speed of the ball when it hits the ground is 102.1 m/s
Explanation:
Given;
initial velocity of ball, u = 25 m/s
distance traveled by the ball = height of the building = h = 500 m
when the ball hits the ground, the final velocity, v = ?
The final velocity of the ball is given by;
v² = u² + 2gh
where;
g is acceleration due to gravity = 9.8 m/s²
v² = (25)² + 2(9.8)(500)
v² = 10425
v = √10425
v = 102.1 m/s
Therefore, the speed of the ball when it hits the ground is 102.1 m/s
The algebraic expression for the component of the normal force in the vertical direction is Force= product of mass and area.
<h3>
What is Force?</h3>
A force is an effect that can alter an object's motion according to physics. An object with mass can change its velocity, or accelerate, as a result of a force. An obvious way to describe force is as a push or a pull. A force is a vector quantity since it has both magnitude and direction. Or, there is a specific meaning to the word "force." At this level, calling a force a push or a pull is entirely appropriate. A force is not something an object "has in it" or that it "contains." One thing experiences a force from another. There are both living things and non-living objects in the concept of a force.
To learn more about Force, visit
brainly.com/question/13014979
#SPJ4
Explanation:
It is given that,
Kinetic energy of the electron, 
Let the east direction is +x direction, north direction is +y direction and vertical direction is +z direction.
The magnetic field in north direction, 
The magnetic field in west direction, 
The magnetic field in vertical direction, 
Magnetic field, 
Firstly calculating the velocity of the electron using the kinetic energy formulas as :



(as it is moving from west to east)
The force acting on the charged particle in the magnetic field is given by :


Since, 
And, 
![F=1.6\times 10^{-19}\times [1178 k-2864.20j]](https://tex.z-dn.net/?f=F%3D1.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%20%5B1178%20k-2864.20j%5D)


(b) Let a is the acceleration of the electron. It can be calculated as :



Hence, this is the required solution.
acceleration = change in velocity /change in time
convert 40km to meter then divide it with 5