The colder the more likely it is to become a liquid
the answer to your question would be D.
Answer:
Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical and chemical constitution of the Earth and its atmosphere. Earth science can be considered to be a branch of planetary science, but with a much older history. Earth science encompasses four main branches of study, the lithosphere, the hydrosphere, the atmosphere, and the biosphere, each of which is further broken down into more specialized fields.
There are both reductionist and holistic approaches to Earth sciences. It is also the study of Earth and its neighbors in space. Some Earth scientists use their knowledge of the planet to locate and develop energy and mineral resources. Others study the impact of human activity on Earth's environment, and design methods to protect the planet. Some use their knowledge about earth processes such as volcanoes, earthquakes, and hurricanes to plan communities that will not expose people to these dangerous events.
The Earth sciences can include the study of geology, the lithosphere, and the large-scale structure of the Earth's interior, as well as the atmosphere, hydrosphere, and biosphere. Typically, Earth scientists use tools from geology, chronology, physics, chemistry, geography, biology, and mathematics to build a quantitative understanding of how the Earth works and evolves. Earth science affects our everyday lives. For example, meteorologists study the weather and watch for dangerous storms. Hydrologists study water and warn of floods. Seismologists study earthquakes and try to understand where they will strike. Geologists study rocks and help to locate useful minerals. Earth scientists often work in the field—perhaps climbing mountains, exploring the seabed, crawling through caves, or wading in swamps. They measure and collect samples (such as rocks or river water), then they record their findings on charts and maps.
Explanation:
Answer:
a) 27.2 rad/min
b) 260 rev/h
Explanation:
The passenger is traveling at 9 mph, this is the tangential speed.
The relation between tangential speed and angular speed is:
v = r * w
Where
v: tangential speed
r: radius
w: angular speed
Also, the radius is
r = d/2
d is the diameter
Therefore:
v = (d * w)/2
Rearranging:
w = 2*v/d
w = (2*9 mile/h)/(58 feet)
We need to convert the feet to miles
w = (2*9 mile/h)/(0.011 miles) = 1636 rad/h
We divide this by 60 to get it in radians per minute
w = 1636/60 = 27.2 rad/min
Now the angular speed is in radians, to get revolutions we have to divide by 2π
n = v/(π*d)
n = (9 mile/h)/(π*0.011 mile) = 260 rev/h
The application of a potential difference across the conductor.
In fact, when the two ends of the conductor are at different voltage, the free positive charges in the conductor will start to flow toward the point at lower potential (while the free negative charges in the conductor will start to flow toward the point at higher potential), producing a net movement of charges, called "current".