To solve this problem we will use Newton's second law in order to obtain the weight of a person. The second law tells us that
F = ma
Where,
m = mass
a = Acceleration
In this particular case, the acceleration is equal to that exerted by the earth through gravitational acceleration, so if the person's weight is 75Kg and the gravity is
, the weight of the body will be,



When the elevator is at rest this reads 735.75N and 75Kg (The same mass of the person)
Change in speed = (acceleration) x (time)
4 minutes = 240 seconds
Change in speed = (40 m/s²) x (240 seconds)
Change in speed = <em>9,600 m/s</em>
What you're actually describing here is a car pulling 4 G's for 4 minutes, and ending up going 21,475 miles per hour.
The driver would definitely NOT get a speeding ticket, because nobody could catch him.
Also, his car would heat up and shoot flames from atmospheric friction.
(He could avoid this with some fancy steering, leave the atmosphere, and end up in low-Earth-orbit.)
Actually, I hope there's nobody in the car. His experience wouldn't be pretty.
Answer: Actually three of them are. The ovaries, the uterus and fallopian tubes.
1000 m/s
You have the wavelength and frequency, you just need to solve for velocity. You can do this by multiplying each side of the equation by frequency.