Work done is given by the change in kinetic energy of an object
- The kinetic energy of the shovel, the shrub, and in Robert's movement were changed, therefore, work is done in the given processes,
Reason:
Work is done when the total energy of object is affected by the application of force on the object over a distance
Therefore;
- In option <em>A</em>, pushing the shovel into ground (to dig out the dirt) the requires the application of a force (push) over a distance, (into and out of the ground) therefore work is done
- In option <em>B</em>, picking the shrub up gives it gravitational potential energy, therefore, work is done
- In option <em>C</em>, carrying the shrub to the hole does visible work
- In option <em>D</em>, holding the shrub while lowering it into the hole does work by preventing the shrub from falling randomly
Therefore, <u>work is done in the given processes</u>
Learn more about work-energy theorem here:
brainly.com/question/10063455
Answer:
v = 16.87 m/s
Explanation:
Given that,
Distance, d = 1.25 miles
d = 2011.68 m
Time, t = 1 minute 59.2 seconds
= 60 s + 59.2 s
= 119.2 s
We need to find the average speed of the horse. It is given by total distance covered divided by total time.

So, his average speed is 16.87 m/s.
This is a good time to review Newton's 3rd law of motion:
"For every action, there is an equal and opposite reaction."
Gravitational force always acts in pairs.
Whatever force the Earth attracts something with,
the thing attracts the Earth with exactly the same force.
If Earth
attracts a person with a gravitational force of <span><span>7.0 × 10² </span>newtons,
the person attracts Earth with a gravitational force of 7.0 × 10² newtons.
Your weight on Earth is the same as the Earth's weight on you !
</span>
Longshore currents are affected by the velocity and angle of a wave. When a wave breaks at a more acute (steep) angle on a beach, encounters a steeper beach slope, or is very high, longshore currents increase in velocity. ... This process, known as “longshore drift,” can cause significant beach erosion.
Answer:
Current, I = 1.08 A
Explanation:
Given that,
Length of the copper wire, l = 12 cm = 0.12 m
Mass of the wire, m = 16 g = 0.016 kg
Magnetic field, B = 1.2 T
The magnetic field is oriented perpendicular to the wire. We need to find the current in the wire.
Magnetic force, F = BIL
Force of gravity, F' = mg
F' = F



I = 1.08 A
So, the current through the wire is 1.08 A. Hence, this is the required solution.