The electric force on the electron is opposite in direction to the electric field E. E points in the -y direction, so the electric force will point in the +y direction. The magnitude of the electric force is given by:
F = Eq
F = electric force, E = electric field strength, q = electron charge
We need to set up a magnetic field such that the magnetic force on the electron balances out the electric force. Since the electric force points in the +y direction, we need the magnetic force to point in the -y direction. Using the reversed right hand rule, the magnetic field must point in the -z direction for this to happen. Since the direction is perpendicular to the +x direction of the electron's velocity, the magnetic force is given by:
F = qvB
F = magnetic force, q = charge, v = velocity, B = magnetic field strength
The electric force must equal the magnetic force.
Eq = qvB
Do some algebra to isolate B:
E = vB
B = E/v
Let's solve for the electron's velocity. Its kinetic energy is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = velocity
Given values:
KE = 2.9keV = 4.6×10⁻¹⁶J
m = 9.1×10⁻³¹kg
Plug in and solve for v:
4.6×10⁻¹⁶ = 0.5(9.1×10⁻³¹)v²
v = 3.2×10⁷m/s
B = E/v
Given values:
E = 7500V/m
v = 3.2×10⁷m/s
Plug in and solve for B:
B = 7500/3.2×10⁷
B = 0.00023T
B = 0.23mT
Answer:
a). A conservative force permits a two-way conversion between kinetic and potential energies.
TRUE
Because there is no energy loss in presence of conservative forces so energy conversion in two ways are possible.
b). A potential energy function can be specified for a conservative force.
TRUE
negative gradient of potential energy is equal to conservative force

c). A non-conservative force permits a two-way conversion between kinetic and potential energies.
FALSE
here energy is lost against non-conservative forces
d). The work done by a conservative force depends on the path taken.
FALSE
work done by conservative force is independent of path
e). The work done by a non-conservative force depends on the path taken.
TRUE
work done by non conservative forces depends on path.
f). A potential energy function can be specified for a non-conservative force.
FALSE
It is not defined for non conservative forces
Answer:
joules
joules
Explanation:
Let us convert the time in hours into seconds

Change in internal energy

where E is the internal energy in Joules
p is the power in watts
and t is the time in seconds

Joules
Amount of work done by the system

where P is the pressure and V is the volume
Substituting the given values in above equation, we get -

liter-atmospheres
Work done in Joules

Joules

Substituting the given values we get -

Thus
joules
joules