It is b. It gains momentum when going down. Think of it like a sled. When you go up the hill, it goes slower, but when you go down the hill, you gain speed(momentum) and it increases
Answer:
is changing in direction, but constant in magnitude
Explanation:
This question is a bit tricky since the velocity of the satellite is changing, but the speed is constant.
Speed is simply a measure of how fast you are going. It doesn't matter where you're going, just how quickly.
Velocity, on the other hand, does care about which direction you're going. For example, it could be then when you travel right, your velocity is positive, and when you travel left, your velocity is negative. This is the similar for a 2D shape like a circular orbit
Since we know velocity is changing, there must be acceleration which changes that velocity (since acceleration <em>is</em><em> </em>the change in velocity: going from 0 to 60 mph, for example)
Thus, with a non-zero net acceleration, we know that there must be a force that is changing in direction, but constant in magnitude (since the orbit is a circle, and always attracted to the center of the Earth at equal distance).
Explanation:
It is given that,
Initial speed of the broad jump, u = 12 m/s
It is launched at an angle of 20 degrees above the horizontal. Let t is the time for which the track star i in the air before returning to Earth. The motion of the track star in the broad jump can be treat as the projectile motion. The time of flight of the projectile is given by :

Putting all the values in above equation as :

t = 0.837 seconds
So, the time for which the track star is in air is 0.837 seconds. Hence, this is the required solution.
Answer:
Explanation:
Given
n=5
0.3 fraction recrystallize after 100 min
According to Avrami equation

where y=fraction Transformed
k=constant
t=time


Taking log both sides


At this Point we want to compute 



taking log both sides



Rate of Re crystallization at this temperature
