Answer:
it should be right it's from go.ogle hm!!!
Explanation:
Anterior or ventral - front (example, the kneecap is located on the anterior side of the leg). Posterior or dorsal - back (example, the shoulder blades are located on the posterior side of the body). Medial - toward the midline of the body (example, the middle toe is located at the medial side of the foot).
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

Answer:
Total work done in expansion will be 
Explanation:
We have given pressure P = 2.10 atm
We know that 1 atm 
So 2.10 atm 
Volume is increases from 3370 liter to 5.40 liter
So initial volume 
And final volume 
So change in volume 
For isobaric process work done is equal to 
So total work done in expansion will be 
Answer:
$900 trillion
Explanation:
If Alaska is 20% of the contiguous US, then the approximate area of interest is ...
1200 miles × 3000 miles = 3.6×10^6 square miles.
The size of a dollar bill is about ...
(6.5 cm)·(15.5 cm) = 100.75 cm^2
One mile is 160,934.4 cm, so 1 square mile is about ...
1 mi^2 = (160,934.4 cm)^2 ≈ 2.59·10^10 cm^2
The number of dollars of interest is then ...
(3.6 · 10^6 mi^2)(2.59 · 10^10 cm^2)/(100.75 cm^2) ≈ 9.3·10^14
≈ 930 × 10^12 . . . dollars
It would cost about 900 trillion dollars to cover the land area of the US in $1 bills.
Answer:
120 N
Explanation:
F=ma therefore 60kg times 2m/s^2 is 120 N