Answer:
La aceleración necesaria para detener el avión es - 10.42 m/s².
Explanation:
Un movimiento uniformemente acelerado (M.U.A) es aquél cuya aceleración es constante y la velocidad de un objeto cambia a medida que el movimiento evoluciona.
Siendo la aceleración "a" el cambio de velocidad al tiempo transcurrido en un punto A a B, la velocidad inicial la velocidad que tiene un cuerpo al iniciar su movimiento en un período de tiempo y la velocidad final la velocidad que tiene un cuerpo al finalizar su movimiento en un período de tiempo, entonces en M.U.A se cumple:
Vf² - Vo² = 2*a*d
donde:
- Vf: Velocidad final
- Vo: Velocidad inicial
- a: Aceleración
- d: Distancia recorrida
En este caso:
- Vf: 0 m/s, porque el avión se detiene
- Vo: 50 m/s
- a: ?
- d: 120 m
Reemplazando:
(0 m/s)² - (50 m/s)² = 2*a*120 m
Resolviendo:

a= - 10.42 m/s²
<u><em>La aceleración necesaria para detener el avión es - 10.42 m/s².</em></u>
10km/10min is a legitimate speed. So is meters/sec, km/hour (kph), etc.
Kph is very common for vehicles:
10 km/10 min (60 min/hr) = 60 kph
Answer:

Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time

The magnetic field at the center of the arc is 4 × 10^(-4) T.
To find the answer, we need to know about the magnetic field due to a circular arc.
<h3>What's the mathematical expression of magnetic field at the center of a circular arc?</h3>
- According to Biot savert's law, magnetic field at the center of a circular arc is
- B=(μ₀ I/4π)× (arc/radius²)
- As arc is given as angle × radius, so
B=( μ₀I/4π)×(angle/radius)
<h3>What will be the magnetic field at the center of a circular arc, if the arc has current 26.9 A, radius 0.6 cm and angle 0.9 radian?</h3>
B=(μ₀ I/4π)× (0.9/0.006)
= (10^(-7)× 26.9)× (0.9/0.006)
= 4 × 10^(-4) T
Thus, we can conclude that the magnitude of magnetic field at the center of the circular arc is 4 × 10^(-4) T.
Learn more about the magnetic field of a circular arc here:
brainly.com/question/15259752
#SPJ4