Answer:
Change in velocity and direction over a specific period of time.
Explanation:
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate the acceleration of an object.
Mathematically, acceleration is given by the equation;


Where,
a is acceleration measured in 
v and u is final and initial velocity respectively, measured in 
t is time measured in seconds.
Hence, the types of changes in motion that cause acceleration is a change in velocity and direction over a specific period of time.
Answer:
4.5 Nm (Anticlockwise)
Explanation:
Let the 75 kg kid is sitting at the left end and the 60 kg kid is sitting on the right end.
Anticlockwise Torque = 75 x 1.5 = 112.5 Nm
clockwise Torque = 60 x 1.8 = 108 Nm
Net torque = Anticlockwise torque - clockwise torque
Net Torque = 112.5 - 108 = 4.5 Nm (Anticlockwise)
Answer:
42.0×10² second²
Explanation:
Here, time is given in milisecond
(64800 ms)²
= 4199040000 ms²
The SI unit is seconds
1 second = 1000 milisecond



42.0×10² second²
Answer:
okay so what you will do is where is says red giant you will write all about what it talks about red giants only, and the box plantary nebulas you will write about what is says about only planetary nebulas. x- hope this helps :)
Explanation:
1. C. Gravitational attraction exists between the two objects.
Explanation:
Gravitational attraction is always exerted between two objects which have mass, and its magnitude is given by:

where G is the gravitational constant, m1 and m2 the masses of the two objects, and r the separation between them. Since the two objects have for sure non-zero masses m1 and m2, even if they are 20 miles apart, the value of the gravitational attraction F is non-zero, so the correct answer is C.
2. D. Two atoms come together to form a molecule.
Explanation:
this outcome is actually caused by the electrostatic forces between the two atoms, not by gravitational force. In fact, gravitational force becomes relevant only when the masses of the two objects involved are large enough: this is the case for planets, stars, galaxies, and objects in the universe. However, two atoms have very small masses, so the gravitational force between them is really negligible. On this smaller scales, the electrostatic force is much stronger than the gravitational force, so the electrostatic force is the real responsible for the formation of bonds between atoms.