Answer:
The changing magnetic field within the loops of wire creates an electric field that pushes the electrons in the wire through the lamp, briefly lighting it
Explanation:
The GE demonstrates that a voltage, and hence a current, can be generated by plunging a coil of wire into and out of a strong magnet.
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.
ONE CAN perform this by doing an ideal experiment
by creating an isothermal system
its like you supply heat to a body and that body is present at very low temperature the amount of heat you supply is equal to the amount of heat lost by that body due to difference in the temperature of the body and the surrounding. heating curve will be constant as there is no change in the internal energy of the system ..
Directly proportional to pressure
It hardens because you are pressing it against something.